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Abstract

We explore two connections between the concepts of coherence, as defined by de Finetti, and arbitrage-free asset pricing
in financial markets. We contrast these concepts when random quantities may be unbounded. And we discuss some of the
consequences for arbitrage theory when coherent previsions are merely finitely (but not countably) additive.
� 2007 Elsevier Inc. All rights reserved.
1. Introduction

de Finetti’s theory of coherent previsions provides necessary and sufficient conditions that a set of gambles
avoids a sure-loss, called a ‘‘Book’’. Parallel to this idea, there is the concept in finance theory of an arbitrage-
free set of prices for a set of risky assets. Here, we contrast de Finetti’s theory of coherent previsions, notably
what is called his Fundamental Theorem of Previsions (Proposition 6) with the Fundamental Theorem of
Asset Pricing (Proposition 5). Respectively, each of these fundamental theorems describes how to extend a
coherent or arbitrage-free scheme to another one with the same desirable feature over the larger set of gambles
or larger set of risky assets, while preserving those previsions or prices already settled. Each theorem provides
interval-valued constraints on how the extension may be achieved. In the case of coherent previsions, it is well
known that these interval valued constraints may be interpreted also as fixing lower and upper one-sided pre-
visions, where one-sided previsions allow different buy and sell prices, as explained below.

We focus our comparison between these two theorems on two aspects of the resulting theories:

1. What if the extensions are to include unbounded random quantities?
2. Coherence, in de Finetti’s sense, permits the use of merely finitely additive (and not countably additive) pre-

visions. What is the counterpart issue for asset pricing? Specifically, by changing the numeraire in which
gambles are determined, a coherent countably additive prevision may be changed into an equivalent one
that is only merely finitely additive. How does this affect the theory of arbitrage-free pricing?
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de Finetti took the concept of random variables as gambles very seriously, and used that to motivate the
familiar concepts of probability and expectation. For each gamble X, he assumed that ‘‘You’’ would assign a
value P(X), called the prevision of X so that you would be willing to accept the gamble b[X � P(X)] as fair for
all positive and negative values b. The only constraint that de Finetti envisioned for you and your previsions is
that you insisted that there be no positive amount that you had to lose for sure. For example, you would not
be allowed to call a gamble fair if its supremum were negative. On the other hand, the criterion is weak enough
to allow you call a gamble fair if its supremum is 0, even if all of its possible values are negative.

Let X be a set of states with a r-field of subsets A. Let X stand for a set of measurable real-valued functions
defined on X. Whether X contains unbounded functions will be made clear in each context. The elements of X
will be called gambles, risky assets, or random variables. Functions of elements of X will also be called by
those same names.

Definition 1. Let X be an arbitrary collection of gambles. Suppose that each gamble X 2 X has a prevision
P(X). The collection of previsions is called coherent if, for every finite n (no larger than the cardinality of X)
and every X 1; . . . ;X n 2 X and every b1; . . . ; bn 2 R,
sup
x2X

Xn

i¼1

bi½X iðxÞ � P ðX iÞ�P 0:
If the previsions are not coherent, they are called incoherent.

Notice that previsions are incoherent if and only if there exist finite n, � > 0, and real b1, . . .,bn such that for
all x
Xn

i¼1

bi½X iðxÞ � P ðX iÞ� < ��: ð1Þ
In other words, your previsions are incoherent if and only if there is some positive amount that you can be
forced to lose by combining finitely many of your fair gambles. A combination of gambles that produces
the inequality in (1) is called a book, and previsions are coherent if and only if no book can be constructed.

The motivation for the definition of coherent previsions is that, if a collection of gambles are individually
fair, then a finite sum of them should also be fair. Infinite sums were not of interest to deFinetti. One reason
might have been the fact that infinite sums of real numbers are not necessarily defined when both positive and
negative values are included. Even in cases in which limits of partial sums exist, the limits can depend on the
order in which the sums are arranged.

The concept of arbitrage is similar to, but slightly stronger than, that of incoherence. The formation of a
fair gamble as a multiple of X � P(X) makes it natural to think of P(X) as a price to pay for a risky asset X. To
avoid arbitrage, it is necessary that your prices do not allow you to lose almost for certain with no chance of
winning. The sticky part is defining ‘‘almost for certain’’. To do this, we introduce a subcollection N �A
called the null events. These events must satisfy:

• if A 2N and B � A, then B 2N;
• if A;B 2N, then A [ B 2N;
• X 62N.

The three conditions above can be recognized as the conditions defining an ideal of subsets of X. A set is
called non-null if it is not null.

Definition 2. Let X be a collection of risky assets. Suppose that each X 2 X has a price P(X). An arbitrage

opportunity (or simply an arbitrage) exists if there exist a finite n, X 1; . . . ;X n 2 X, and b1; . . . ; bn 2 R such thatPn
i¼1biPðX iÞ 6 0 and

Pn
i¼1biX iðxÞP 0 for all x with strict inequality for x in a ‘‘non-null’’ set.

There are some connections between arbitrage and incoherence. Suppose, for example, that all constant
gambles (assets) are in X. That is, for each real c, the gamble Xc with Xc(x) = c for all x is in X. Then, pre-
visions will be incoherent and an arbitrage will exist unless P(Xc) = c for all c. For the remainder of this paper,
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we will assume that all X c 2 X and that the price and/or prevision of Xc is c for all real c. These assumptions
cannot affect whether or not the previsions are coherent nor can they affect whether or not arbitrages exist.
The reader will note that arbitrage, as provided for in Definition 2, is equivalent to the following reformula-
tion, which parallels the formulation in Definition 1.

Definition 2 0. An arbitrage opportunity (or simply an arbitrage) exists if there exist a finite n, X 1; . . . ;X n 2 X,
and b1; . . . ; bn 2 R such that

Pn
i¼1bi½X iðxÞ � P ðX iÞ�P 0 for all x with strict inequality for x in a ‘‘non-null’’

set.

Incoherence implies the existence of arbitrage but not vice versa, as Proposition 1 and Example 1 show.

Proposition 1. If previsions are incoherent, there is an arbitrage opportunity, no matter which sets count as null.

Proof. If previsions are incoherent, there exist n, X1, . . .,Xn, � > 0, and c1, . . .,cn such that
Pn

i¼1ci½X i�
PðX iÞ� < ��. Let bi = �ci for i = 1, . . .,n and c ¼ �þ

Pn
i¼1biPðX iÞ and let X0(x) = c with b0 = �1. ThenPn

i¼0biX iðxÞ > 0 for all x and
Pn

i¼0biP ðX iÞ ¼ ��. So, there is an arbitrage no matter which sets count as
null. h

Example 1. Consider a simple state space with X = {0,1}. Let X(x) = x and P(X) = 0. Suppose that N ¼ f;g
is the collection of null events. Then this single prevision is coherent, but it leads to the obvious arbitrage
opportunity.

Example 1 could be ‘‘fixed’’ by declaring {1} to be another null event. The next example, however, cannot
be fixed.

Example 2. Let X ¼ Zþ. Let X(x) = 1/x and P(X) = 0. Since supxb[X(x) � 0] P 0 for all real b, this
prevision is coherent. On the other hand, P(X) 6 0 while X(x) > 0 for all x, hence there is an arbitrage no
matter which events we declare to be null.
2. Unbounded random variables

When X includes unbounded quantities, it may be impossible to assign finite previsions to all of them.

Example 3. Let X ¼ Zþ, and let Y(x) = 2x. Also, define Xi(x) = I{x}(i) for i 2 Zþ. Suppose that P(Xi) = 1/2i

for all i, corresponding to a geometric distribution over X. Finally, let
Y iðxÞ ¼ Y ðxÞI ½1;i�ðxÞ ¼
Xi

j¼1

2jX jðxÞ;
for all i > 0, so that Yi is Y truncated to the interval [1, i]. It is easy to see that Y P Yi for all i and that
P(Yi) = i for all i > 0. If P(Y) could take a value, it would have to be1, but such a prevision is not consistent
with idea that b[Y � P(Y)] is a fair gamble for some non-zero b.

In cases like Example 3, we will use the notation P(Y) =1 to mean that b[Y � p] is acceptable for all finite
p and all b P 0. Similarly, P(X) = �1 means that b[X � p] is acceptable for all finite p and all b 6 0. In this
way, infinite previsions mean that only one-sided bets are acceptable for the corresponding unbounded ran-
dom variables.

The reader can find a treatment of previsions for unbounded random variables in Crisma et al. [1], based on
a two-point compactification of the real line. Also, an account of one-sided previsions for both bounded and
unbounded random variables is given in Troffaes and de Cooman [9], which extends many of the ideas on one-
sided previsions found in Walley [10]. Seidenfeld et al. [8] show that once (one-sided) previsions for unbounded
random variables are infinite, or once finite previsions for unbounded random variables are not continuous
from below, it is not possible to preserve indifference between equivalent random variables. We illustrate
the latter problem with the following example, taken from Seidenfeld et al. [8].
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Example 4. Let X = {1,2,3, . . .} · {0,1}. Let the probability on X be Pr[x = (n, i)] = 2�(n+1) for n = 1,2, . . .
and i = 0,1. Define three random variables X, W1, and W2 on X as follows:
X ðn; iÞ ¼ n;

W 1ðn; iÞ ¼
nþ 1 if i ¼ 1;

1 if i ¼ 0;

�

W 2ðn; iÞ ¼
nþ 1 if i ¼ 0;

1 if i ¼ 1:

�

In this way, all three of X, W1, and W2 have the same Geometric(1/2) distribution, that is each random var-
iable equals the integer m with probability 2�m for m = 1,2, . . . The expected values are all equal to 2. It is also
easy to verify that W1 + W2 � X = 2. All three of X, W1, and W2 can have the same prevision if and only if
that prevision is 2. But de Finetti’s theory of coherence requires only that P(X) P 2. (See Proposition 6 below
for a proof of this fact.) Adding that equivalent random variables carry the same prevision compels continuity
(from below) for non-negative, unbounded random variables. We develop this theme in Section 4, below,
where we discuss some of the effects of using finitely additive previsions in the theory of arbitrage.
3. Extending previsions and prices

Both coherence and arbitrage have equivalent formulations in terms of linear inequalities. In what follows,
X stands for an arbitrary linear combination of gambles or assets. When X is a linear combination of gambles,
we use P(X) to mean

Pn
i¼1biP ðX iÞ if X ¼

Pn
i¼1biX i where the X i 2 X.

Say that X 6 c if X(x) 6 c for all x. Such an inequality will be called a weak linear inequality. Say that
X � c if X(x) 6 c for all x and X(x) < c for all x in some non-null set. Such an inequality will be called a
non-null linear inequality.

Proposition 2. The previsions for gambles in a set X are coherent if and only if every weak linear inequality
satisfied by the gambles is also satisfied by the previsions.

To prove Proposition 2, notice that
Pn

i¼1bi½X i � P ðX iÞ� < �� if and only if
Pn

i¼1biX i þ � <
Pn

i¼1biPðX iÞ. A
similar idea establishes the following.

Proposition 3. The prices for assets in a set X lead to no arbitrage opportunities if and only if every non-null

linear inequality satisfied by the assets is satisfied as a strict inequality by the prices.

Definition 3. A linear functional on a linear space X is a real-valued linear function. A positive linear functional
is a linear functional L such that L(X) P 0 whenever X P 0. A strictly positive linear functional is a positive
linear functional L such that L(X) > 0 if X � 0. A positive linear functional L is countably additive if, for every
non-negative increasing sequence fX ng1n¼1 that has a pointwise limit X, limn L(Xn) = L(X). A positive linear
functional is merely finitely additive if it is not countably additive.

Both coherence and arbitrage have equivalent formulations in terms of linear functionals. The following
two results have straightforward proofs. See [2] for Proposition 4 and Delbaen and Schachermayer [3] for
Proposition 5.

Proposition 4. The previsions for gambles in a set X are coherent if and only there is a positive linear functional L
defined on the linear span of X such that L(X) = P(X) for all X 2 X and L(1) = 1.

Proposition 5 (Fundamental Theorem of Asset Pricing). The prices for assets in a set X admit no arbitrage

opportunities if and only there is a strictly positive linear functional L defined on the linear span of X such that

L(X) = P(X) for all X 2 X and L(1) = 1.

Extending a coherent set of previsions to include another gamble not in the linear span of X is similar to
extending an arbitrage-free set of prices to include another asset not in the linear span of X.
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Proposition 6 (Fundamental Theorem of Prevision). Suppose that coherent previsions are given for all gambles

in a set X. Let Y be a real-valued function not in X. Let,
A ¼ fX : X 6 Y and X is in the linear span of Xg;
A ¼ fX : X P Y and X is in the linear span of Xg:
Define
PðY Þ ¼ sup
X2A

P ðX Þ;

PðY Þ ¼ inf
X2A

P ðX Þ:
Then P(Y) can be taken to be any number in the closed interval ½P ðY Þ; P ðY Þ� and the resulting previsions are still

coherent. Furthermore, no value outside of that closed interval would be a coherent value of P(Y).

Proposition 6 is a version of the theorem in Section 3.10 of de Finetti [2]. The proof of this version is similar
to the proof of Proposition 7 below. One example of Proposition 6 is contained in Example 3, assuming that X
contains the bounded gambles in the example but not Y. In that example P ðY Þ ¼ PðY Þ ¼ 1. The interpreta-
tion of infinite prevision in Proposition 6 is precisely the one given immediately after Example 3.

A more intriguing example of Proposition 6 is embedded in Example 4.

Example 5. Consider the random variable X in Example 4. Here X has a Geometric(1/2) distribution with
expected value equal to 2. In Proposition 6, P(X) = 2 and P ðX Þ ¼ 1. As we stated in Example 4, we now have
many choices for P(X), namely anything in the closed interval [2,1].

We will return to Example 5 later to illustrate some other interesting features of prevision for unbounded
gambles. In particular, the prevision of a random variable is not merely a function of its distribution as is the
mathematical expectation.

For arbitrage-free asset prices, we have the following similar result.

Proposition 7. Suppose that prices are given for all assets in a set X such that there are no arbitrage

opportunities. Let Y be a real-valued function not in X. Let,
B ¼ fX � Y : X is in the linear span of Xg;
B ¼ fX � Y : X is in the linear span of Xg:
Define
P ðY Þ ¼ sup
X2B

PðX Þ; PðY Þ ¼ inf
X2B

P ðX Þ:
Then P(Y) can be taken to be any number in the open interval ðPðY Þ; P ðY ÞÞ and there will be no arbitrage oppor-

tunities. Furthermore, choosing a price for Y outside of the closed interval ½P ðY Þ; P ðY Þ� would lead to arbitrage.

Proof. First, we show that prices outside of the closed interval lead to arbitrage. Suppose that P(Y) < P(Y)
(the case of P ðY Þ > P ðY Þ is similar). Let X 2 B be such that P(X) P [P(Y) + P(Y)]/2, so that P(Y) � P(X) < 0.
Since X � Y, we have Y � X P 0 for all x with strict inequality on a non-null set and P(Y) � P(X) < 0, which
constitutes an arbitrage.

For the main assertion, assume, to the contrary, that P(Y) is chosen inside the open interval, but that there
is an arbitrage. The coefficient of Y in the arbitrage must be non-zero or there would have been an arbitrage
even without Y. So, suppose that there are X 1; . . . ;X n 2 X and b1, . . .,bn and b such that
bP ðY Þ þ
Xn

i¼1

biP ðX iÞ 6 0; ð2Þ

bY ðxÞ þ
Xn

i¼1

biX iðxÞP 0; ð3Þ
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for all x with strict inequality for x 2 A, a non-null set. Assume that b < 0 (the other case is similar). It follows
from (3) that
Xn

i¼1

� bi

b
X iðxÞP Y ðxÞ; ð4Þ
for all x with strict inequality for x 2 A. Hence, the random variable on the left side of (4), call it X, must be
an element of B in the statement of the proposition. The fact that P(Y) < P(X) is a contradiction to (2). h

The following example illustrates why the interval of possible prices is open in the main assertion of Prop-
osition 7.

Example 6. Let X ¼ Zþ. Let N be the collection of all finite subsets. Let X consist of the linear span of all
constant functions and all indicators of singletons, i.e., I{n} for all n. Let P(I{n}) = 0 for all n and P(c) = c for
each constant c. If X ¼

Pk
i¼1biX i � 0, then X(n) is a positive constant for all but finitely many n and P(X)

equals that constant. There are no arbitrage opportunities. Now, suppose that we want to add the random
variable Y(n) = 1/n for all n. Then P ðY Þ ¼ 0 ¼ P ðY Þ, and Proposition 7 gives us no leeway to choose an
arbitrage-free price for Y. Indeed, P(Y) = 0 leads to arbitrage all by itself as in Example 2.

Sometimes it is possible to avoid arbitrage by choosing P(Y) equal to an endpoint of the open interval in
Proposition 7. For example, if Y is itself a linear combination of elements of X, then P ðY Þ ¼ P ðY Þ and the
common value avoids arbitrage.

The difference between coherence and lack of arbitrage hinges on considerations of continuity. The follow-
ing definition introduces a stronger continuity condition than is required for lack of arbitrage.

Definition 4. A free lunch is a net fðX a; Y aÞ : a 2 @g where each Xa is in the linear span of X and each Ya is
arbitrary and such that Xa � Ya for all a, limaYa = Y � 0, and liminfaP(Xa) 6 0.

Delbaen and Schachermayer [3] give a version of Proposition 5 for stochastic processes that relies on a con-
dition that is weaker than no free lunch but still stronger than no arbitrage. We will not pursue that condition
here.

Proposition 8. If there is an arbitrage opportunity, then there is a free lunch.

Proof. Suppose that there exists an arbitrage opportunity. Then there is an X in the linear span of X with
P(X) 6 0 and X � 0. Let @ ¼ Zþ in Definition 4, Xa = X for all a, and Ya = X � 1/a for all a. Then Xa � Ya

for all a, limaYa = X � 0, and lim infaP(Xa) = P(X) 6 0. h

The converse of Proposition 8 is false as illustrated in Example 7.

Example 7. In Example 6, let @ ¼ Zþ,
X aðnÞ ¼
1

n

� �
If1;...;agðnÞ þ

1

a

� �
Ifaþ1;...gðnÞ;
and Ya = Y for all a. Since P(Xa) = 1/a, this is a free lunch.

Requiring that there be no free lunch requires that prices be a countably additive linear functional.

Proposition 9. If prices are merely finitely additive, then there is a free lunch.

Proof. If prices are merely finitely additive, then there exists a sequence fZng1n¼1 and Z such that Zn 6 Z for all
n, limn Zn = Z, but limn P(Zn) < P(Z). Let c 6 P(Z) � limn P(Zn). Let @ ¼ Zþ. For each a 2 @, let Ya =
Za � Z + c/2 and Xa = Ya + c/4. Then Xa � Ya for all a, limaYa = c/2 � 0, and limaP(Xa) 6 �c/4. h

For more discussion of free lunch when probabilities are countably additive, see [5].
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4. Finitely additive probability

An alternative method of extending coherent previsions is provided by the Hahn–Banach theorem. Suppose
that X consists of a collection of bounded gambles and Y � X is a larger set of bounded gambles with larger
linear span than X. The Hahn–Banach theorem guarantees the existence of an extension of a positive linear
functional L on the linear span of X to a linear functional L 0 on the linear span of Y. We can make sure that
L 0 is positive using the fundamental theorem of prevision. We have not been able to apply the same reasoning
to asset prices and arbitrage without additional conditions, as we explain following the proof of Proposition
10 below.

Let Y contain X and all indicators IA for sets A in some collection of subsets of X. For example, we could
include all subsets or just those in some field or some r-field. When we extend our previsions to the linear span
of Y and then restrict the extension to just the collection of indicators, we have a finitely additive probability.

To be specific, let l(A) = P(IA). Then l(X) = 1, l(A) P 0 for all A, and l(A [ B) = l(A) + l(B) when
A \ B = ;. Every finitely additive probability l has a unique decomposition as alc + (1 � a)lf where
0 6 a 6 1, lc is countably additive, and lf is purely finitely additive. (See [6].)

Definition 5. A probability m is purely finitely additive if, for every � > 0, there exists a countable partition
fAng1n¼1 of X such that

P1
n¼1mðAnÞ < �. A probability m is strongly finitely additive if there exists a partition such

that
P1

n¼1mðAnÞ ¼ 0. We call a probability m weakly finitely additive if, no set A with m(A) > 0 equals a
countable union of sets each with 0 probability.

Proposition 10. Suppose that P is a strictly positive linear functional defined on the linear span of X. Let Y 	 X
include indicators for all events in a class C such that fx : Y ðxÞ > xg 2 C for every Y 2 Y and every real x. Let

P 0 be an extension of P to Y and let l(A) = P 0(IA) for each A 2 C. Assume that the null sets are the sets C with

l(C) = 0, and assume that l is weakly finitely additive. Then P 0 is strictly positive.

Proof. Let Y 2 Y be such that Y � 0, that is, Y(x) P 0 for all x with strict inequality for x 2 A a non-null set.
Write A ¼

S1
i¼1Ai where Ai = {x:Y(x) P 1/i}. Since l(A) > 0 and l is weakly finitely additive, there must exist

j such that l(Aj) > 0. Now, Y P IAj=j, so P 0(Y) P l(Aj)/j > 0. h

In the light of the unavoidable arbitrage that results from the coherent previsions in Example 2, where the
finitely additive probability is strongly finitely additive, it is necessary to add a restriction about the finitely
additive probability appearing in Proposition 10 in order to assure that the extension of P to P 0 is arbi-
trage-free. Thus, the existence of arbitrage-free prices on a specific set is insufficient to assure the existence
of arbitrage-free extensions to larger sets.

From the lesson of Example 4, we can inquire what kind of integral is possible that does not give equivalent
random variables equal prevision. The following discussion indicates how to do this.

Suppose that we have a positive linear functional defined on a linear space L. This space might be the lin-
ear span of X or it might also contain indicators for some events. If X is a simple function, i.e. X ¼

Pn
i¼1aiIAi

where each IAi 2L, then P ðX Þ ¼
Pn

i¼1ailðAiÞ. This looks a lot like the first part of the definition of the Lebes-
gue integral with respect to l.

Let X 2L be bounded, and suppose that X�1(A) has its indicator in L for every interval A. Then, there
exist sequences of simple functions fX ng1n¼1 and fX ng1n¼1 such that, for all n,

• X n 6 X 6 X n,
• X n � X n 6 1=2n,
• X n 6 X nþ1, and X nþ1 6 X n.

It follows that
P ðX Þ ¼ lim
n!1

P ðX nÞ ¼ lim
n!1

P ðX nÞ:
This also looks like a part of the definition of the Lebesgue integral.
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The general theory of integration with respect to finitely additive measures starts with a finitely additive
signed measure defined on a field F of subsets of X. Many interesting functions are not measurable with
respect to a typical field. The general definition of finitely additive integral is fraught with measurability
considerations.

Without going into details, there are conditions under which a non-measurable function f still has a
‘‘uniquely defined’’ finitely additive integral. In particular, there needs to be a sequence ffng1n¼1 of integrable
simple functions such that the outer absolute measure of {x: |fn(x) � f(x)| > �} goes to 0 for every � > 0 and
the functions are an L1 Cauchy sequence. See [4, Section III.2] for more detail on the general theory of finitely
additive integrals.

An alternative definition of integral begins with a positive linear functional L on a linear space of functions
L. Such a functional is a Daniell integral if fn # 0 implies L(fn)! 0. This last condition is equivalent to count-
able additivity for indicator functions (using pointwise convergence in L). So, the following definition seems
natural.

Definition 6. A positive linear functional L is a finitely additive Daniell integral. We call such an L the finitely
additive Daniell integral with respect to l if L(IA) = l(A) for each set A at which l is defined.

There is a question of whether or not we should add a weaker continuity condition to the definition before
calling L a finitely additive integral.

Example 8. Let F be a field of subsets of X, and let l be a finitely additive probability. Let L consist of the set
of all bounded measurable real-valued functions on X. Define Lðf Þ ¼

R
f dl, the finitely additive Daniell

integral with respect to l. Suppose that fn! f uniformly. Then, L(fn)! L(f).

With the definition of a finitely additive Daniell integral, we have the following rewording of the result in
Proposition 4: ‘‘Previsions for a collection of gambles are coherent if and only if they are the finitely additive
Daniell integrals of the gambles.’’ To put the claim into perspective, recall Example 5.

Example 9. Let X ¼ Zþ and let P(I{n}) = 2�n for all n. Let X(n) = n for all n. Then P(X) = 2 and P ðX Þ ¼ 1 in
both Propositions 6 and 7. This time, we have many coherent (and arbitrage-free) choices for P(X). In
particular, we could choose P(X) = 4, which does not match the countably additive integral of X. However, in
the light of Example 4, upon doing so, on pain of incoherence, not all Geometric(1/2) random variables can
have the same prevision.

Does P(X) = 4 match a finitely additive integral in Example 9? The answer is ‘‘yes’’ according to the fun-
damental theorem of prevision and the equivalence of coherence with the existence of positive linear function-
als. We can even make the linear functional continuous. Of course, every positive linear functional L such that
L(1) = 1 is continuous in the topology of uniform convergence. But the topology of uniform convergence does
not extend nicely to sets with unbounded functions.

Proposition 11. Suppose that You assign the value c P 2 as P(X) in Example 9. Let L be the linear span of X

and the bounded functions. There exists a norm k Æ k on L and a positive linear functional L that extends

previsions to all L such that L is continuous with respect to k Æ k.

Proof. Each f 2L has a unique representation as f = aX + h where h is bounded. Define L(f) = ac + P(h).
This L extends P from the bounded functions to L. Let k Æ k1 be the L1 norm with respect to the (countably
additive) measure l that derives from P. Let d > 0. For f = aX + h, define
kf k ¼ khk1 þ jajd:

It is easy to check that this is a norm. Notice that kanX + hnk ! 0 if and only if an! 0 and khnk1 ! 0. But
then L(anX + hn) = anc + P(hn)! 0. So, L is continuous with respect to the norm. h

In the topology of Proposition 11, no sequence of bounded functions converges to an unbounded function,
although some sequences of unbounded functions do converge to bounded functions. Despite the fact that the
underlying measure l (that derives from P on the bounded functions) is countably additive, the extension of P
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to L is merely finitely additive in the sense of Definition 3. For example, let Xn = min{X,n} for all n and
notice that limn Xn(x) = X(x) for all x but limn P(Xn) = 2 < P(X). (This limit is pointwise as required by Def-
inition 3, not the limit in the k Æ k topology.)

Choosing P(X) to be greater than the expectation of X puts constraints on the values that we could assign as
previsions for other unbounded random quantities.

Proposition 12. In Example 9, suppose that P(X) = E(X) + D, where E(Æ) stands for expectation and D > 0. Let Y

be a non-negative random variable defined on the same domain as X:

• If limn!1Y(n)/n =1, then P(Y) =1.

• If limn!1Y(n)/n = 0, then P(Y) = E(Y).
Proof. For each positive integer k, define Xk = X if X 6 k and Xk = 0 otherwise. Also define X 0k ¼ X � X k so
that X ¼ X k þ X 0k for all k. Because Xk is bounded, P(Xk) = E(Xk), so P ðX 0kÞ ¼ EðX 0kÞ þ D. Next, define
Yk = Y if X 6 k and Yk = 0 otherwise. Also define Y 0k ¼ Y � Y k so that Y ¼ Y k þ Y 0k for all k. If
limn!1Y(n)/n =1, then for every M > 0 there exists NM such that for all n P NM, Y(n) P Mn. For every
M > 0 and k P NM, Y 0k P MX 0k, hence
P ðY ÞP P ðY 0kÞP MP ðX 0kÞ ¼ MEðX 0kÞ þMD:
Since D > 0 and M can be chosen arbitrarily large, it follows that P(Y) =1.
For the second claim, we know that for every � > 0 there exists M� such that for all n P M�, Y(n) 6 �n. For

every � > 0 and k P M�, Y 0k 6 �X 0k, hence
P ðY Þ ¼ P ðY kÞ þ P Y 0k
� �

¼ EðY kÞ þ P Y 0k
� �

6 EðY kÞ þ �P X 0k
� �

6 EðY kÞ þ �P ðX Þ:
Since P(X) is finite and � can be arbitrarily small,
P ðY Þ 6 lim
k!1

EðY kÞ ¼ EðY Þ:
Since P(Y) P E(Y) by coherence, we must have P(Y) = E(Y). h

If two random variables have the same distribution, then they have the same expectation. The same is not
true of prevision if the random variables are unbounded, as Example 4 shows.

Suppose that we have two fair coins, and we believe that their flips are independent of each other. Let X be
the number of the flip on which the first coin lands heads for the first time. Let Y be the number of the flip on
which the second coin lands heads for the first time. Coherence does not require that P(X) = P(Y). Of course,
violating P(X) = P(Y) implies finite additivity of the previsions in the sense of Definition 3, as illustrated in
Example 4.
5. The numeraire

The finitely additive nature of previsions like those in the previous examples becomes more apparent when
we consider a change of numeraire. Results about coherence were stated in terms of random variables and
numerical previsions. Implicit in all this is what is meant by a unit. That is, we pay P(X) units to receive
X(x) units in state x. If all units are dollars, we can make sense of this. Similarly, if all units are euros, we
can make sense of it. If we are willing to contemplate both currencies simultaneously, then we have to consider
the exchange rate. In particular, the exchange rate itself can be a random variable.

Example 10. Let X be a function from X to R. If we think of X as specifying a number of dollars in each state,
this will be different than if X specifies a number of euros in each state. The distinction is caused by the fact
that the exchange rate can be random. To keep things straight, let PD and PE stand for previsions when the
random quantities are assumed to be in units of dollars and euros, respectively.
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Suppose that there are three states X = {x1,x2,x3} which have equal probabilities in the following sense.
When prizes are dollars, each of the acts X i ¼ Ifxig for i = 1,2,3 has PD(Xi) = 1/3. So, You are willing to pay
$1/3 in order to get $1 if xi occurs and 0 if not, for i = 1,2,3.

Suppose that the three states have different exchange rates, however. For example, if x1 occurs, €1 = $1.10,
if x2 occurs, €1 = $1.20, and if x3 occurs €1 = $1.30. Let c1 = 1.1, c2 = 1.2, c3 = 1.3, and define C(xi) = ci for
i = 1,2,3. Then C is the random exchange rate in $/€, and 1/C is the random exchange rate in €/$.

For each gamble Y in dollars, Y 0 = Y/C is the same gamble reexpressed in units of euros. Similarly, if Y 0 is a
gamble in units of euros, then Y = Y 0C is the same gamble in dollars.

The following result shows how to do change of numeraire calculations in cases like Example 10. Although
Proposition 13 uses the notation of Example 10, it is very general.

Proposition 13. Let C be the random exchange rate in $/€. Assume that 0 < PD(C) <1:

• The marginal exchange rate in $/€ is PD(C) = 1/PE(1/C), and PE(1/C) is the marginal exchange rate in €/$.

• Let Y be a gamble in dollars with its equivalent Y 0 = Y/C in euros. Assume that previsions are defined for both

gambles in their respective currencies. Then PE(Y 0) = PD(Y)/PD(C) and PD(Y) = PE(Y 0)/PE(1/C).
Proof. Let Y 0 be the gamble that pays €1 in every state so that PE(Y 0) = 1. The dollar gamble that pays C

dollars in each state is equivalent to the euro gamble Y 0, so PD(C) is the amount of dollars that has the same
value to You as €1. That is PD(C) is the marginal exchange rate in $/€. Similarly, the euro gamble that pays
1/C euros in every state is the same as the dollar gamble that pays $1 in every state. So, PE(1/C) is the marginal
exchange rate in €/$. The fact that these are reciprocals will follow from the second claim.

For the second claim, let Y be a gamble in dollars with Y 0 = Y/C its equivalent in euros. Assume that these
gambles have finite previsions in their respective currencies. Hence, You are indifferent between Y and Y 0. You
are also indifferent between Y and PD(Y) dollars as well as between Y 0 and PE(Y 0) euros. Changing dollars to
euros means that you are indifferent between PD(Y)PE(1/C) euros and PE(Y 0) euros. So, PD(Y) = PE(Y 0)/
PE(1/C). Similarly, changing euros to dollars means that you are indifferent between PE(Y 0)PD(C) dollars and
PD(Y) dollars. So, PE(Y 0) = PD(Y)/PD(C). Combining the two equations just established for the second claim
also shows that the two exchange rates are reciprocals of each other.

Finally, suppose that PD(Y) =1. Then You are still indifferent between Y and Y 0, however, now Y is
worth more that every dollar amount x. Hence Y 0 is worth more than every euro amount xPE(1/C), and
PE(Y 0) =1. A similar argument shows that if PE(Y 0) =1, then PE(Y) =1. h

Example 10 illustrates another interesting feature that applies regardless of whether previsions are count-
ably additive or merely finitely additive.

Example 11. Consider again the three gambles (from Example 10) in dollars, X i ¼ Ifxig for i = 1,2,3. We had
PD(Xi) = 1/3 for i = 1,2,3. Now consider the same three numerical functions as Euro values instead of dollar
values. Then
P EðX iÞ ¼
P DðX iCÞ
P DðCÞ

¼ ci=3

1:2
¼

0:3056 if i ¼ 1;

0:3333 if i ¼ 2;

0:3611 if i ¼ 3:

8><
>:
The states have different probabilities when elicited in euros instead of dollars.

The point of Example 11 (extracted with modification from [7]) is that if one interprets the prevision of the
indicator of an event as the probability of the event, one must realize that what counts as a unit (the numer-
aire) makes a difference.

The effect of finitely additive previsions on exchange rate changes can be illustrated by returning to Exam-
ple 9. There, X had the distribution of the number of tosses of a fair coin until the first head, but we gave X the
prevision 4. Suppose that this prevision was in dollars. Suppose that the random exchange rate in $/€ is C = X.
Then PD(C) = 4 is the marginal exchange rate. What are the new probabilities for each state {n} when elicited
in euros?
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As in Proposition 13,
P EðIfngÞ ¼
P DðIfngCÞ

P DðCÞ
¼ n

2nþ2
;

for n = 1,2, . . . It is easy to see that
P1

n¼1P EðIfngÞ ¼ 1=2. We started with a countably additive probability over
the states. Then we performed a change of numeraire which produced a finitely additive probability. The rea-
son is that we had assigned the random exchange rate a finitely, but not countably, additive prevision. Nev-
ertheless, the previsions in one currency are coherent if and only if the previsions in the other currency are
coherent, so long as the marginal exchange rate is strictly positive and finite.

6. Summary

Although the coherence and arbitrage-free conditions are similar, they are not identical. Forbidding arbi-
trage is a stronger requirement than requiring coherence. Each is equivalent to the existence of certain linear
functionals that reproduce previsions/prices. Each allows mere finite additivity. Absence of arbitrage does pre-
clude certain finitely additive setups while coherence allows all finitely additive setups. A condition even stron-
ger than being arbitrage-free is ‘‘no free lunch’’ which precludes all mere finite additivity as well as some
countably additive setups. Extending coherent previsions to include an additional gamble is always possible.
Extending arbitrage-free prices to include an additional gamble is sometimes possible.

Regardless of whether prices are countably or finitely additive, the choice of unit (numeraire) makes a dif-
ference in how previsions/prices are interpreted. In particular, changes in numeraire can change probabilities
of events. In this sense, a change of numeraire is similar to a change to an equivalent measure. Previsions/
prices for unbounded quantities can be merely finitely additive even if probabilities are countably additive.
In such cases, a change of numeraire can convert the probabilities to be merely finitely additive, with the con-
sequence that arbitrage-free prices must be different for some equivalent random quantities.
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